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Hierarchical Interfaces in Random Media II: 
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Anton Bovier 1 and Christof Kiilske 2 

Received February 1, 1993 

We continue the analysis of hierarchical interfaces in random media started in 
earlier work. We show that from the estimates on the renormalized random 
variables established in that work, it follows that these models possess unique 
Gibbs states describing mostly flat interfaces in dimension D > 3, if the disorder 
is weak and the temperature low enough. In the course of the proof we also 
present very explicit formulas for expectations of local observables. 
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1. I N T R O D U C T I O N  

In this p a p e r  we cont inue  the analysis  of  h ierarchica l  mode l s  for interfaces 
s ta r ted  in refs. 1 and  2. I t  should  real ly be seen as a c o m p a n i o n  p a p e r  to 
ref. 1 and  we will assume tha t  the reader  is famil iar  with tha t  paper .  In  
ref. 1 we have p roven  a b o u n d  on the expected height  of the surface at  the 

or igin for these mode l s  in D > 3 and  for weak disorder .  In this paper ,  we 
will show tha t  from the es t imates  ob ta ined  there, one can actual ly  p rove  
existence and  uniqueness  of  the G ibbs  measure  for these models  and,  
moreover ,  give a closed express ion for the expec ta t ion  values of any  local  
observable  with respect  to this measure.  We believe tha t  this is, at  least,  of 
some pedagog ica l  interest .  

A l though  our  models  have been defined in ref. 1, we repeat  them here 
in a sl ightly different wording,  sett ing up, in par t icu lar ,  the precise 
p robab i l i s t i c  f r amework  needed for the analysis  of  the G ibbs  measures.  
This will be done  in the r ema inde r  of this section, where the ma in  theorem 
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will also be stated. In Section 2 we will prove this theorem, making use of 
the estimates from ref. 1. 

Recall that our models describe d-dimensional solid-on-solid surfaces 
embedded in a D = d +  1 lattice 77 D. They will be constructed from collec- 
tions of towers and wells with bases formed by squares of side length L", 
and of arbitrary height, fitting together in a hierarchical way that will be 
described formally as follows. 

Let L be a positive integer that for simplicity we may choose to be 
odd, L = 2k + 1. We introduce the sets Y(") of labels for the blocks of the 
nth hierarchy. As for the moment we work in infinite volume, each of these 
sets is a copy of Z d. Let us define the map 2 ' -~:  Y(")--+ Y("+~) by 

(~kO-- lJ)i ~ [Ji~ -~'-~k ] ( 1 . 1 )  

where [x]  denotes the largest integer less than or equal to x. We also 
denote, for y e y(n + 1), by 5r the set of points x s y(n) such that 5e - ix  = y. 
Note that thus the set 5eny is the cube of side length L n centered at Lny 

in the underlying lattice Y(~ To each such cube we associate a 
"tower," i.e., an integer-valued height hCy "). The collection of these heights 
describes the surfaces. In particular, its actual height Hx above a point 
x ~ y(o) is computed as 

&= (1.2) 

Notice that for (1.2) to make sense we must require that for each x e  y(O), 
the sequence h ~ , ~  is summable, i.e., that only a finite number of its mem- 
bers may be different from zero. Let us introduce also the "coarse-grained" 
heights H (u) above the cube y ~ y(U) in the Nth hierarchy as 

H(yN) = ~ '%.~la(N + n)ny (1.3) 
n = 0  

Note that the collection of the H i  s), NET/+, yG7/d, provides an 
alternative representation of our surfaces. 

We denote the state space of all surfaces described in this way by ~2, 
i.e., 

{{ (n) ~ )~Z ~ [co (~) } (1.4) (2-- = COy } r(,).n~+, (oy ye ~-"x < ~  V x E Z d  
n=O 
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f2 is a dense subspace of ~---(2~z~)~=Z ~•  equipped with the product 
topology of the discrete topology of g. We will denote by Z" the trace of the 
Borel sigma-algebra of 7/z~• in (2, i.e., 

1"1 + y ~ y(n) 

Let h(yn): t'2--+ Z be the projection given by 

(n~ (1.6) 

Note that this notation implies that H(y u), too, can be considered as 
functions on ~2 in a natural way. The reader may find the summability 
condition imposed on the ~o~)-=x in the definition of t2 puzzling. But 
notice that it is necessary to ensure that the heights H(yN)(fO) exist and are 
finite for all ~o e O. Since they furnish the actual physical description of the 
surfaces, this is a necessary requirement. 

The energy of a surface was defined formally as 

Ej= Z Z Ih~l L~d 1~,,+ Z Jx(Hx) (1.7) 
n = 0 y c y(nJ x E y(01 

where the Jx(H) are random surface energies that describe the random 
medium.(1) 

Our aim is now to turn (O, Z) into a probability space with a prob- 
ability measure given by a Gibbs measure associated to Es. To do this, we 
have to construct first the corresponding local specifications (see, e.g., refs. 3 
and 5), which is done as follows. Let A be a finite subset of y(O~ _= 2a (note 
that later we will be interested in sequences A= of such volumes that are 
increasing and absorbing; i.e., for any finite subset X c  7/d there exists an no 
such that for all n/> n o, X c  A,. We define 

Y(=)(A)== {ye Y(") t 5f=y=A} (1.8) 

Note that, for given A, there exists a maximal value of n such that 
Y(=)(A) r ~ .  We denote this value by n~(A). We then set 

n i ( A )  

Y(A)=- U Y(")(A) (1.9) 
n = 0  

Correspondingly, we denote the finite-volume state spaces 

t - -  y ) y ~  Y ( n ) ( A )  (l.10) 
t2A = { (c,r t - - y  J y ~  Y ( n ) ( A ) , n = O , . . . , n i ( A ) }  ~ ~ Y ( A )  

822/73/1-2-17 
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We denote by 
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_= ...... = z  

the sigma-algebra generated by the canonical projection from t? to f2 A. We 
will also write 

Z A c ==_ (n ) 

and 

( ')  I (%,  co c) + ( 1 . 1 1 )  

The local specifications tt.,~,+ are probability kernels on f2, such that for 
given configuration t /=  (tIA, ttAC) ~ (2 and any Z-measurable function f ,  

1 t "  

#~,~.j(f)--- Z#,+|af(cgA,h, ~ qAC) exp[--flEA,j(OJA, tlA~)] de)A (1.12) 

where 

rigA) 
EA,j(eJA, tlAc)=-- ~ ~ Ih(ym(OOA)lL(a-1)'+ ~ Jx(Hx(O)A,tlAc)) (1.13) 

n = 0  ) ,~  Y(n)(A) x e A  

Z~,a.+ is as usual the normalization constant ("partition function") which 
turns the ]~A,fl, J t l  into probability kernels on t?. Note that tLA~ + "  ( f )  is 
SAc-measurable, g~A.~,J(fg)= f(r/)#],a,+(g), if f is Zzc-measurable, and for 
A 1 ~ A 2 these kernels satisfy the compatibility condition 

r/ . _ _ ~ t /  
#A2,~,J#AI,~,S-- A2,~,J (1.14) 

A probability measure # on (~9, Z) is called a Gibbs measure for the local 
specification #A,~,J" if it satisfies the Dobrushin-Landford-Ruelle (DLR) 
equations (3, 5) 

tq~A,~,s---tt for all finite A (1.15) 

We recall now the assumptions that were made on the family of 
random variables describing the disorder. Let (F, ~,~, P) be an abstract 
probability space, let J -  {Jx(H)} H~ Z.x~ Z~ be a family of random variables 
defined on this space, and denote by 

Dx(H, H') = J~(H) - Jx(H') (1.16) 

the associated difference variables. We assume that the following properties 
hold: 
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(i) For  fixed x, the stochastic processes {Dx(H, H')}H,n,~ are 
stationary under the simultaneous shift (H,H')-*(H+k,H'+k), for 
ke2~. 

(ii) The stochastic processes {Jx(H)}H~ ~ are independent for 
different x. 

(iii) IDa(H, H')  = 0, for all x e 2 a. 

We are now in a position to announce our main result: 

T h e o r e m  1. Let d > 2 ,  J=-{Jx(H)}H~z,.~z~ be such that (i) (ii), 
and (iii) hold. Assume in addition that for some fixed 04 r~<  1/2 the 
associated difference variables satisfy for all 5 > 0, for all x e Z ~, and all 
H#H'eZ 

a2 <-2% 
P[Dx(H,H')>6]<~exp(-2a2IH_H,[2r)+oxp ( ~2 / (1.17) 

Then there exist rio< o% a~>0 ,  and L o <  oo and a set F c F ,  P ( F ) =  1, 
such that for all fl ~>/30, cr2~ a2, L/> L o, and J e  F the local specification 
/~4.B,s has a unique Gibbs measure #~.j. 

Remark 1. We will give an explicit construction of #~.j for local 
observables. 

Remark 2. Note that the condition (1.17) is in fact slightly more 
general than the conditions in refs. 1 and 2, which correspond to the 
extreme cases r = 0 and r = 1/2, respectively. It is, however, very easy to 
extend the estimates from ref. 1 to this entire range (details can be found 
in ref. 4). 

Remark 3. It may appear surprising that we prove the existence 
of one unique Gibbs state. In fact, this is an artefact of the hierarchical 
structure of the model. The nontrivial statement of the theorem is that of 
the existence of the Gibbs measure. 

Remark 4. As explained in ref. 1, the condition d >  2 is crucial for 
our proof, and the result is not expected to hold if d =  2 (at least for the 
nonhierarchical model. The minimal value of L for which we can prove the 
result depends on d and tends to infinity as d+ 2. One may expect that in 
d = 3  the theorem should hold with L o = 2  (or 3); however, for technical 
reasons due to the method of proof we need a larger value. This is 
explained in ref. 1. 
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2. C O N S T R U C T I O N  OF T H E  G I B B S  M E A S U R E  

In this section we will derive an explicit expression for the local 
specifications introduced in the last section that reflects in a particularly 
transparent manner the hierarchical structure of our models, and that will 
turn out to be crucial in constructing the actual infinite-volume Gibbs 
measures. 

Let us begin by introducing some notation. Let us denote, for any 
/? > 0, by ~ c E z the set 

5"~-{{a=}=~ ~ e-P~'~'+a=)<oo} (2.1) 
r t ~ Z  

and let 5 ~ be the intersection of all these sets, i.e., 

50 - N ~ (2.2) 
/ ~ > 0  

For any sequence {a,},~ z e 5e, we define measures/~({a=},~z) on 7/by 

~t~( {a, }=~z)( {m } ) _ e-~(ImL +a,,,) (2.3) 

We denote by ~e({a= } n ~ z) the corresponding "partition functions," 

~t~({a=}=~z) = - ~ e -~(l"t+") (2.4) 
n f f Z  

and by pa({a,}=~z) the probability measures obtained by normalizing 
~a({a=}=~z). Note .that these measures are really Gibbs measures on 7/. 
The measures are the same for sequences that differ only by a constant, and 
we will view pa as probability measure-valued functions on 5~/~. An object 
of particular interest will be seen to  be the "free energy" q~ associated to 
these measures, which we will consider as a real-valued function on 5 p, 
defined by 

~a({a=}=~z)=--lln Z e-~l=l+~ (2.S) 
h '  n E / /  

(Note that we have changed the notation here slightly from that of 
ref. l--see Eq. (2.4) there--for later convenience.) Finally, we have to 
consider the action of the translation group 77 on our objects. We will 
denote by the generic name T k the lift of the translation operator on 
sequences, i.e., 

Tkp~( {a, }, ~ z) ---- P~( {a, + k },~ z) (2.6) 

Tk ~b~({a, }, ~ z) -- qSB({a=+k},~ z) (2.7) 

etc. 
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Using this terminology, we can write the local specifications (1.12) as 
follows: 

#~ '~ 'J ( f )=z] ,~ ,  s (~,(~)) ].i(~)-,"" ~o) 

x [l &~°,)({o}.~)(dG" d) 
Yni6 Y(ni)(A) 

X H ~ (n -- 1) p~,.,-,,({o}.~)(d%._, )... 
Yn i - I e y(ni-  I)(A ) 

X . . .  

Yl ~ Y(1)(A) 

YO ~ Y(O}(A) 

(2.8) 

where we have set f l ( ' ) - L  (d 1 ) n ~ .  Notice that Hy(l ) does not depend on 
variables in g2~ ). Our strategy is to replace the measures fie in the last line 
by the corresponding normalized measures PB, using that 

17[ Pp(')( { 0 } ~ ~ ~)(d~°(yl~ ) ) 
Yl ~ YII) (A)  

~)( ¢Oyo )f(o~A, tlA~) 
y o c  Y(O)(A) 

Yl 6 Y(I)(A) Y0~ -C'°Y! 

y0 ~ Y(0)(A) 

YO E Y(O)(A )\.~o y(1)( A ) 

y l E  Y(I)(A ) 

p ( J (n) )(d~o! °)) 
yo6 Y(O)(A) 

x [I Tn~) ,yo(~ac)~t~({Jyo(n)}.~z)f(COA, tlAc ) 
YO ~ Y(O)(A )\f.~ y(l  )(A ) 

(2.9) 
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Here we have defined 
! 

JSJI)(H)~Ld-1 E THqS~({ey(h)}hez) (2.10t 
y e =C#y 1 

(1) c Note that we have written Hse-%(q A ) in the last line of (2.9) to make 
explicit that this variable depends only on the external configuration. Thus 
the product in the last line is just a Xw-measurable constant. It is now 
evident that this procedure can be iterated, resulting in the following 
expression: 

r/ 

X ~ T (n i t) n ,  , [ T ( n i ) l ( r , l ~ , ~ ( n i ) ~  
--I-1 2~ (r~*c)Pfl~n~r'," vn. ) ' t ~ t ~  y,,. ,' 

Yni~  y (n i ) (A )  ~ Yni - - i t 

• H r.7_,..,,_ 
Yn i -  1 E Y ( n i -  I)(A) 

• - . -  

H (~) (l} ( t )  TH~_b/oa,~)P~"l(Jy~ )(d~ ) 
Yl E Y(1)(A) 

Here we use, for notational convenience, the abbreviation 
j(~l - { jy(.)(h) } h ~ z. The sequences J~") are recursively defined by 

Y 

J(9)( H) =-- Jy( H) 
1 (2.12) 

x ~  C~y 

These are of course just the renormalization group equations derived and 
analyzed already in refs. 1 and 2. Note that the constants that were still 
present in (2.9) have canceled against the partition function, so that in 
(2.12) we have achieved our goal of expressing the local specification 
entirely in terms of the probability measures pp. 

Let us now consider a function f that is measurable with respect to 
the a-algebra Z A, which we will call a "local function." (Note that each 
cylinder function is a local function in this sense.) 

Define now for any A c Z d the sets 

~g(')=- { y e Y(") [ s c~ A r (2.13) 

Notice that for any finite A, for n large enough, Y(~)(A) will eventually 
consist of just the point zero. We define 

n . (A ) - i n f {n ]  Y~")= {0}} (2.14) 

x 1-[ T,~,  %r162176 ~ f ( o A ,  ~,~) (2. I1) 
yo ~ Y ( ~  
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If now we consider an absorbing and increasing sequence of volumes Ak, 
then for any given A, there exists some ko< ~ such that n ° ( A k o )  = - -  

sup{hi £ f ' O c A ~ o } > ~ n . ( A  ). The expectation of f with respect to the 
local specifications corresponding to Ak, k > ko can then be written [-with 

0 _ _  0 
n i = n i ( A k )  ] as  

#~A~,~,J(f) = f~ 

X 

X 

T_( , °  + *). ~. ,~ _(.°)t j ( , ° ) ~ t  dco(,°)~ 
t l  0 (~Ak)Vfl \ 0 ) \  0 ] 

T (0) ~ (n0-1)(  l (n i  - 1 )~(Ar ,~(n i  - 1 ) ]  

x fz TH(°°°(A)+~(°%"TAPPe("(A))(J(o'°(A)))(do~(°'°(A))) 

X r ~  f T H  (ha(hI)) "~o c,Do(na_l)(J(na 1 ) ) ( d ( . o ; ~ a _ ~ l l ) )  
Yna-- 1E y(na I)(A) Z ~-lyn a I t Ak'qAk)rP \ Yna-I a-- 

X * ' .  

x 1-~ fz T (1) c o j(o) d (o) 
yo~  ?(0)(A) H ~ e - b ' O ( ° ' A ~ " " A ) P / ~ (  )( )'o ) ( ( O y o ) f ( C O A k )  (2.15) 

Notice that the dependence on r]A i only enters through H o (1/4) and 
that the integral in the last four lines is just a function f ,  depending only 
o n  

~O(o 4°,(~)) + .. .  + M??) + H(o'? + ' > ( ~ )  

Thus (2.15) can be written in the form 

#Ak,e,J ( f )  - 

× 

X 

× 

o o o o 

r . g ,  + %ApP p'",'C J(o" )l( d ~ P  >) 

0 0 T~.., + 1 )  . . . . . . . .  (nOi) Oa(nO--l}( g~  tli -- l ))(  d m  (#° -  1)) 
* ' 0  K q A k ]  T "~0 ~ P  \ U 

f e e T - ~ "  ~)o2p + 'A'+'pe('o'~')(J(o'°(A)) ) (dCO(O'O(A))) (no+ ), (n 
H 0 (qAk)+ ... +(ooa 

× 7(~O(o4°'(A)) + .. .  + Mo¢)+ no(-, °+ ,)(,A;)) 
°+ 

- ,2~,., o(~k),.o(~ y . . . ,  y ( H )  (2.16) 
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In the last equation, only the measures 

~'o ~247 1("4) 
1: nO(Ak), na(A) 

depend on the finite volumes Ae and the boundary conditions q4" 
Moreover, the dependence on these boundary conditions is only through 

the sequence of integers Ho p(AO+ 1(r/4 ), that is, the corresponding infinite- 
volume limits depend only on the limit of this sequence. Now due to the 
definition of (2 [-recall (1.4)], these sequences converge to zero as AkTY_ a 
for all t/el2. In this way we see that the hierarchical model admits 
effectively only one "boundary condition at infinity." To construct the 
infinite-volume Gibbs measures, we are thus left to analyze the convergence 
of the measures on the integers 

VnOi(Ak),na(A) ~ ]lOnOi(Ak),na(A ) 

k o m m a  2.1. Suppose that Jo ~) are such that 

L e t  ])n, no 

exists. 

Proof. 

• p/~(,)(Jo("))(co (") r 0) < oo (2.17) 
n = O  

be the measures defined below Eq. (2.16). Then 

w-lim v~,,0-= v,0 (2.18) 
nToo 

Let us define measures/~n,,o on Z n-"~ through 

m..0(g) = ~ p.,~ "~) 

x f:_ T~,(,lpt3(,-l)(J(o " -  x))(do)(n-')) 

X ' ' -  

x I~ To,(,)+ ... +o,(,olp~i,ol(J(o"~ (n~ 

x g(co("~ co (")) (2.19) 

Of course the measures vn,,0 are just the measures on the sum-variables 
~o(n)+ -.. + co (n~ induced by the /~,,,o- To prove the weak convergence of 
those measures, we first show that for all k e g the sequences Vn, n0 ({k}) are 
Cauchy sequences (w.r.t. n). 
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F o r  integers n2 >~ nl ~> no we have  

v.2,~o({k})=#.2,.o((o(n~ ... + c g ( " ' ) = k / x  (co(~'+1),..., ~o( '2) )=0)  

+ /~2,,o(09(~~ + . . .  + ~o(~2)=k/x (~o (~'+~) ..... co(n2))~O) 

(2.20) 

F o r  the first t e rm we use 

#.2,.o(CO("~ + .- .  + ~o (~') = k I ( ~o("' + 1),..., ~o(.2)) = O) 

= #~t,.o(c~176 + ' "  + (9(~') = k )  ( 2 . 2 1 )  

to  write 

#,~,,,o(~(,,o) + . . .  + co(,,) = k A (co ("' + 1) ..... oJ ('~)) = O) 

= p.2,~o(co("~ + . . .  + co (~') = k [ ( c~ + i),..., c0(.2)) = O) 

• + '),..., co (~2)) = O) 

= v.,..o( {k} )(1 - #.2,.o((c9("' + ~ I ..... co ("2)) :/= 0)) (2.22) 

We  es t imate  the second  te rm in (2.20) by 

#.2,.o((O("~ + -. .  + co ('2) = k /x  (09 ("' + i) ..... ~0 ("2)) ~ O) 

~< #~2,.o((~0 ("1+ ~) ..... ~0 (~2)) ~ O) (2.23) 

Hence  

Iv,,2,.o({k})-vnl,no({k})l 

~<,.2,no((Cor ..... o~ ( n ~ ) ) # 0 ) ( l +  vn, ,~o({k}))  

~< 2/~.2,n0((co(.,+ 1) ..... co (n2)) r 0)  

"2 

= 2  Y, ~n2, .o(CO(")e0 A (co(m+') , . . . ,co(~2))=O) 
m = n  1 + 1 

r/2 

=2 Z #m, no(O(m)~o)J2n2,no ((('t)(m+l) ..... ( / ) ( " 2 ) ) = 0 )  

r e = n ,  + 1 

n2 

2 ~ p,g(m)(J(m))((D (m) 5 ~ O )  ( 2 , 2 4 )  

m = n ,  I-1 

But  by our  a s sumpt ion ,  p~(Jr '')) (co (m) r O) is s u m m a b l e  an d  thus  the last 
line in (2.24) converges  to zero  as n l ,  n2 T oo, as desired. Hence  we define 
v.o({k}) = l i m . r ~  vn,.o({k}). To  end  the proof ,  we have  to verify tha t  this 
defines a p robab i l i ty  measu re  V.o on  Z. 
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To do so, note that from the same reasoning as above we get 

sup ~ v.2,~o({/})~<2 ~ p~<m,(J(om))(co(m)¢o) 
n2>~nl l, lll>~k m = n l + l  

+ ~ v~,,0({/}) (2.25) 
l, lll ~>k 

From this it follows that 

l imlimsup ~ v,,,o({1})=O 
kToo nToo l, Lll>~k 

From (2.26) then in fact it follows, of course, that 

l =  - - c ¢  

(2.26) 

v,0({/})= lim lira ~ v,,,~0({/}) 
k ~  n ~  LLII<k 

= 1 -  lim lira ~ v.,.0({l})= 1 | (2.27) 
k T ~  n T ~  l, lll>~k 

An immediate corollary of Lemma 2.1 is the following proposition, 
which forms the central result of this section: 

P ropos i t i on  2.2. Let Jo (') satisfy the assumptions (2.17) of 
Lemma 2.1. Then the infinite-volume limit w-limk ~ o~ " - /~Ak,~,J = #P,J exists for 
all r/~ ~ and is independent of the choice of t/and of the sequence Ak. Here 
#¢,j is the unique Gibbs measure for the local specification #A,fl,  J" 

Proof. To prove (i), just notice that, for any XA-measurable function 
f, (2.16) together with Lemma 2.1 implies that 

lira # ~  ~ j ( f )= f v,o(Al(deo) f(co ) (2.28) 
k ~ ' o o  ' ' Jz 

since limkx~ Ho('°(Ak))(r/)= 0. Thus we take the right-hand side of (2.28) as 
a definition of the finite-dimensional marginals. These are easily checked to 
be compatible and hence give by Kolmogorov's theorem a unique infinite- 
volume measure #~,j. Since our specification is not continuous, we cannot 
directly conclude from the compatibility relations (1.14) by performing the 
infinite-volume limit that #~,j satisfies the DLR equation. However, using 
(2.28), this is easily verified by a direct calculation on finite-dimensional 
cylinder events. Conversely, it is well known that for all extremal Gibbs 
measures/~e,j we have the g~,fa.s, convergence of ttnAk,B,j(f) to  ].t~,j(f) for 
all bounded measurable functions f (see ref. 3, p: 122). Since we have 
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classified the weak limits of local specifications for all boundary conditions, 
we have in fact already obtained all Gibbs measures. | 

We see that to prove Theorem 1 from Proposition 2.2, all that is left 
to do is to show that the assumption of Lemma 2.1, Eq. (2.17) is verified, 
with probability one, under our hypothesis on the random variables J. But 
given the estimates proven in ref. 1, this is quite easy. Namely, from 
Proposition 3.1 of ref. 1 we have that 

62 ) / 62 :,'~ 
PI-Jo(")(H)~<-&]~<exp 2a21H12r +exp~ 0- 7 j (2.29) 

with o -2 = c"G 2, for some c < 1 (for r = 0, see ref. 2, and for 0 < r < 1/2, see 
ref. 4). Now the convergence of the series in (2.17) is guaranteed if all but 
a finite number of its terms are dominated by the terms cn of some 
convergent series. Thus the theorem is proven if 

P [p~4Jo("))(c0 (n) # 0) > c,, i.o.] = 0 (2.30) 

which follows from the Borel Cantelli lemma (6) and the fact that 

Y. pEp~{°~(]o("~)(~o (') #0 )  > c,]  
n - - 0  

F L ~ 0  exp{-H(")[ lhl  + J~o")(h)]} ] 
n~O 

n = O  h:/-O 

[ ' 1 <~ 2 p J(o')(h)< - I h l - - ~51n (c ,~ )  < oe 
n = O  hv~0 

(2.31) 

where ~ h=e  Ihl / (1-e  1), and c, may be chosen, e.g., equal to (1/2)'. 
Thus Theorem 1 is proven. 
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